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Conformation fluctuations of polymerized vesicles in the inextensible and flexible limit
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We study conformation fluctuations of a tethered membrane of spherical shape. The membrane is assumed
to be both inextensible and flexible. We first study linear fluctuations and show that they are irrelevant in this
limit. Nonlinear fluctuations can be described in terms of isometric buckling of local circular portions of the
membrane. Configurations of buckled regions on the membrane are then modeled as a system of rings whose
excitation energies are the elastic energy cost of buckling. The rings should be nonoverlapping with one
another due to geometrical constraints. We study the thermodynamics of this system using a variational
method, and the results are interpreted in terms of the shape fluctuations of the membrane itself. Our results
indicate that there is no roughening transition when we raise the temperature. In other words, the membrane
remains “flat” at all temperatures even though it is made of very flexible mat¢840063-651X%97)02209-5

PACS numbeps): 87.22.Bt, 05.26-y, 02.40.Hw

I. INTRODUCTION amplitudes and hence in-plane modes are irrelevant in the
harmonic approximation. However, the situation is different
Over the last several years, polymerized or tethered menfer “curved” membranes, for which stretching or shearing
branes[1-4] have been extensively studied, partly due tomodes are the same order effects as those from out-of-plane
their relevance to the biophysics of cell membrang$ undulations. Polymerized vesicld23-26, for example,
Mammalian red blood cells, for example, have lipid bilayercannot bend without stretching. This is purely for geometri-
membranes with cross-linked spectrin networks anchoredsal reasons, and this behavior of closed surfaces becoming
which play important roles in determining the equilibrium very inflexible due to slight stretchability is known as the
shapes and the fluctuations around thggh The spectrin  monotypy theorem in classical elasticity thegig)].
networks have been extracted and their fluctuations have Let us consider an elastic membrane which has a shape of
been investigated by various experimental methpds$], a spherical shell in its undeformed state. Suppose we apply
giving slightly ambiguous results, especially regarding thean external force at one point on the surface. If it is perfectly
presence of the so-callecrumpled phasd9-15. Cross- inextensible, then, even though it is extremely flexible, it
linked synthetic polymer networKd6] or exfoliated graph- would not allow any deformation for the reason just dis-
ite oxide crystal§17,18 have also been used in experiments.cussed. Now, if we add a slight extensibility along with a
In theoretical studies, polymerized membranes are usuallfinite flexibility, it will make a small circular dent when
modeled as elastic sheets, since microscopic details will bacted on by an external force. The size of the dent will be
irrelevant on large length scales. The mesh size of spectridetermined by the competition between the two energy
networks, for example, is of order 16 m, but often we are terms, bending and stretching: The more flexible and the
interested in fluctuations on the order of £am. In this case, more inextensible the material is, the smaller the size will be.
membranes can be idealized as purely two-dimensional suFor a small enough force the size of the dent is almost con-
faces with bending rigidities, in-plane shear, and compresstant, but when we increase the force beyond a certain criti-
sional moduli[19,20. cal value the surface will bucklg27] and the size of the
The energies due to in-plane strain are, in general, muclimple will grow. We claim that this dimplelike localized
larger than those from bending, as will be illustrated shortlydeformation of circular shape is the most relevant one in
for cases of thin elastic sheets and red blood cell membranedescribing the fluctuations of spherical membranes, which
Hence, if bending without stretching or shearing is allowed.are very inextensible and flexible at the same time.
it will dominate the low-temperature fluctuations. However, ~We focus in this paper on such shape changes of curved
stretching almost always accompanies bending except, fanembranes due either to external forces or to thermal fluc-
example, when flat elastic sheets are roll2dl]. Hence, in  tuations. For mathematical simplicity we restrict ourselves to
general, the undulations whidbcalize stretched or sheared membranes with constant radii of curvature, i.e., closed
areas will be the dominant modes. spherical shells. The membranes are assumed todx¢en-
This type of shape deformations was first studied bysible (or incompressiblgand flexible that is, the character-
Lobkovsky et al. [22] for membranes whose ground-state istic in-plane elastic energy is supposed to be much larger
shapes are flat. For flat membranes the above argument agran the typical bending energy. It should be noted that this
plies only for large-amplitude fluctuations or forced crum-is the complementary limit of that usually studied through
pling, since the in-plane strain is second order in bendingenormalization-group methods. The in-plane moduli are
known to be renormalized to zero at large length scales,
while the bending rigidity diverges due to its nonlinear cou-
*Present address: Basic Science Research Institute, Postech, Riing with in-plane phonon modd&-4,9. This implies that
hang, Korea 790-784. the membrane is in the fldhoncrumpled phase. Therefore
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our model should be considered with the understanding that 1 0

it provides a valid description of fluctuation of membranes Gup= ) (1)
only below a certain length scale and at low enough tempera-
tures. This will be explained later in more quantitative terms.

The outline of this paper is as follows. In Sec. Il, we first E 0
review some basics of classical elasticity theory for two- B .= R )
dimensional surfaces suitable for a statistical mechanics ap- P 0 1/’
proach. We then present precise definitions of inextensibility R

and floppiness, and their limits of validity are clarified. This

section provides the motivation for our study of inextensiblewhere we have assumed tiatis much larger than the size
and flexible membranes. Both linear and nonlinear conforof the coordinate patch, which is in turn much larger than the
mation changes due to external forces are discussed in Sdgpical length scale in the problem.

[ll, which will be the basis for the main argument of this  Wwe usel]=(ux,uy) to denote the tangential displacement,
paper. andw to denote the verticdinward) deflection of the mem-

~ In Sec. IV, the forced crumpling of spherical membranesprane from this ground-state conformation. In general, the
in various circumstances will be described. We will reSt”Ctmagnitude ofil will be very small compared to, because

our discussion to nonsingular deformations throughout thigpa " membrane is assumed to be very inextensible. The in-
paper. This nonlinear and nonsingular regime is only pos:

‘ < , plane strain tensar, ; and the bending strain tensar, ; are
sible because of the initial curvature in the njembrane;s. Fotrepresented, to the lowest order, by
flat membranes, large deformatigother than simple rolling
or corrugation immediately introduces singularities as de- 1/ du, dug 1 0w Jdw
scribed by Lobkovskyet al.[22]. The elastic energy is con- Uap=5| on Ton. ~ 2BasW |5 55— 75— (€)
fined along a line joining two singular points in this case, B “
whereas the line makes a closed loop in our case. The integng
action of polymerized vesicles with smooth surfaces will
also be briefly mentioned. 9*w

We then present the thermal fluctuation of closed spheri- Wap™ = o\ an (4)
cal shells in Sec. V. First, we argue that dimplelike “elemen- «TP
tary” excitations are the building blocks of the shape fluc-Here, and throughout this paper, Greek letters such asd
tuations. Then we formulate a statistical mechanical probleng are used to denot& and y components of the two-
of nonoverlapping dimples, and solve it through a variationaldimensional vectors. Note that the coordinate patch should
method. We show that the membrane remains “flat” due tope small enough so thaw/Jx , is always bounded for both
the interactions between these dimples in the suitable limity =x andy.
FinaIIy, in Sec. VI we summarize our results and present The elastic energy densiti@ss and FB due to Stretching
directions for future research. and bending, respectively, are given, up to the second order,

as follows(Hooke’s law:

IIl. MODEL fs=3Ks1(Tr Uyup)?+KepTr(Uyp)?, (5)

We consider a closed elastic membrane with a constant fo=2kg1( Tr w,z)%+Kgp Tr(W,z)2 (6)
: . - af B2 aB)
radius of curvatureR, i.e., a hollow spherical shell. The
membrane is assumed to be very inextensible and very flexwhere the coefficients are the two-dimensional elastic con-
ible at the same time. We assume that it has a small but finitetants, whose physical meanings are
thicknesst, which is uniform throughout the surface.

Any two-dimensional geometric surfaces embedded in ks=Ks1+Ksp bulk modulus,
three-dimensional Euclidean space can be characterized by
two bilinear functions: the first fundamental form, i.e., the ks, shear modulus,
induced metric tensor, and the second fundamental form,
which represents the extrinsic geometry of the surfas. kg=kg1+2kg, bending rigidity,
Therefore the elastic energy of a thin membrane, in the limit
of t—0, can be idealized to consist of two separate contri- 2kg, Gaussian rigidity.
butions: one from the in-plane strain and the other from its . o
bending in three-dimensional Euclidean spg2@. Note that the Gaussian rigidity term &f (~Detw,z) can

We use, throughout this paper, a local coordinate systerﬁe safely neglected for closed membranes from the Gauss-
around an arbitrarily chosen point on a membrane such th&tonnet theorenj2g]. _ _
it is the projection of the Cartesian coordinate system of the . When the membrane is mafje of a homogeneous material
tangent plane to the undeformed membrane at that poittith (three-dimensionalYoung's modulusk and Poisson
(Monge representationWe use):=()\x,)\y)=(x,y) to rep- ratio o, these constants are expressed as folldv@
resent the internal coordinate on the membrane, then, in this Et
coordinate system, the first and the second fundamental kgy= i , )
forms G4 andB,; are represented as 1-o?
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Note thatkg; ~ks, andkg;~kg,, Sinceo is a small positive
number &1/2) for most materials. This is generally true for
other inhomogeneous membranes such as biomembranes.FIG. 1. Corrugation of a planar membrane in thalirection.
Since we are mainly interested in the relative importance offhis is the only mode of deformation for completely inextensible
stretching and bending contributions to the elastic energy, wenembranes.
will only use two symbolks andkg to represent the typical
sizes of the in-plane modulus and the bending rigidity, re- f K

. S S S 5
spectively, unless otherwise indicated. W (13

From the above expressions, it is easy to see that the B 7B

bending moduli become quadratically smallet irelative to )
the in-plane moduli as—0; that is to say, the membrane is For the case of membranes made of homogeneous material,

| . o D T . -2 : ; 2712
more inextensible than rigid-to-bending as its thickness beKs/Ke~1"“ as explained earlier, and henég/fg~w/t*.
comes small. For our polymerized membranes of interestSince we are interested in large length scale fluctuations, i.e.,

- . ; ; ; 2542

whose lateral dimensions are typically much larger than th&/e assume that is large enough such thaty“>t“ (or
thickness, this is usually true as well. For mammalian redV~>Ks/kg, in general in this paper, the above argument
blood cell membranes of thickness 10~8 m, kg is around justifies our study of membranes which are inextensible
thickness is fixed for this case, the numbers indicate that, however, the bending energy always dominates the in-

kg is aboutt? times larger tharkg. plane energy. Without this length scdle- Vkg/ks or ~t,
The total energy is obtained by integrating the sum ofthe membrane would become too rough to be described by
fs andfg over the entire surface, classical elasticity theory. This small-scale smoothness also
makes it possible to take the local coordinate systems defined
earlier.
F[G,w]zf d):(fs+fB), (11 If we consider large deformations which are comparable
membrane to the linear size of membranes, thatwis=|, such as in the

case where a flat membrane is bent into hemispherical shell,
where the invariant integration measure has been substitutede ratio fg/fg for homogeneous membranes is just the

by that of the undeformed spheré,Det(GaB)d)C, which is  square of the aspect ratio between the linear size and the

none other than that of a plard . This integration has to be thickness, which can be as large as 1000 in most cases of
done in many coordinate patches. interest, yieldingf s/fg=10°. We also obt4a|n similar figures
The fluctuations of elastic membranes can be studied, ifP" cell membranes of typical siZz@~10"" m.

principle, by calculating the partition functioh from this _For aplanar membrane R— ), however, deformations
“Hamiltonian,” F, without stretching are possible, and hence these fluctuations

will be dominant modes at low temperatures. The complete
inextensibility imposes the constraintg;= 0, that is,

z=f DM[u,w]e  AFluwl, (12)
uy, [ ow\?
) ZW + ( 07_X) =0, (14)
where the functional integration meas&1[u,w] includes
the self-avoiding constraint, and is the inverse tempera- 5
ture, in units of the Boltzmann constant. In general, calculat- &Jr w -0 (15)
ing Z is a formidable task, if not impossible. In this paper, ay ay]

we restrict ourselves to a special class of membranes which
are inextensible and flexible, whose meanings will become
clear in the following discussion. - =
Let us first estimate the relative importance of the two ay Iax X dy

terms in the elastic energy, EQ.2). If an initially flat mem-

branewarps aboutw over an arbitrary length scale then in an appropriate coordinate system. The only allowed solu-
|uqgl is of order w?/I? and |w,,| of order w/I? from  tions are simple corrugations of a membrd@é] as shown
Egs. (3) and(4). Therefore, from Eqgs(5) and(6), in Fig. 1. For curved membranes, this mode of fluctuation is

Iy duy oW oW _ 18
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not allowed due to geometrical constraints, and the bendingraves$ become massive due to the nonzero curvature of the

and the stretching modes aabwvayscoupled as will be dis- initial conformation. Its characteristic length scale is given
cussed in Sec. lll. by

1/4
Ill. SHAPE DEFORMATIONS §~(%) R”Zw(tR)”Z, (22)
S

A. Linear regime
- . 6 . . .
Elasticity theory is usually nonlinear from two origins, Which is around 10 m using the numbers given earlier.

physical and geometrical. Since we always assume physica_lhe on-site fluctuation of the radial displacement, defined by

linearity in this paper, that is, the material is assumed to obe$d- (20, is
Hooke’s law[Egs. (5) and (6)], the reason why the model
partition function Eq.(12) leads to the nonlinear equations (W)~ i R 1R 22
of state is purely geometrical.

Let us also assume geometrical linearity in this subsec-
tion, which, in particular, implies assuming a very lafge  Here and throughout this paper, constants of order unity are
Then we can neglect the nonlinear terms in the strain tensogsmitted. Note that the root-mean-square f|uctuau(ﬁ27
Uqp andw,g. We further assume that, anduy are so small  grows with the exponen} as the radiuR increases. Hence
that we can neglect them entirely. Then we have only onghe linear fluctuation will be irrelevant for a large spherical
scalar field of displacement on the sphese,Now we can  membrane. However, more importantly, the linear theory
easily compute the partition function for this system. First, inbreaks down when the free-energy contribution from the last
the local Cartesian coordinate system defined in Sec. Il, theerm in Eq. (3) becomes comparable to that of the linear

strain tensors become order, at which point the amplitude of the radial fluctuation

W V(w?) is of the order£?/R. That is, the following should

~-— 0 hold,
i 17
Ugp= 1 3\ 1/2
w -1 ( B) ~Ft4
- — RB™*<|—| =Et% 23

0 = B ks (23

and in order for the linear theory to be applicable. The typical

value of the right-hand side is around #8 J m. This trans-
lates, for a spherical membrane wih=10"4 m, into a criti-

_ (92_W _ 7w cal temperature below 1 K. Therefore we conclude that one
ax? Ixay has to go beyond the linear theory to explain the fluctuations
Wop= 5 e (18) of spherical membranes of “typical” size in the physically
_gw 0w interesting limit.
Ixady ay? A more general case without the assumption of inextensi-
bility (or u,=u,=0) in the linear theory, was studied in Ref.
From Egs.(5), (6), and(11), it is easy to obtain [24]. In this study, the longitudinal phonon modes were
found to be coupled with the radial undulations.
| 2k kg -
F:j da R—:W2+ ?B(VZW)2 B. Buckling
If we retain nonlinear terms in the partition function, the
. - [ 4Ks 2 radial (vertica) phonons are no longer independent, and we
:EJ daw ?JFkBV w, (19  need to take into account the interactions among them. In

fact, the interactions are so strong that perturbation theory
, . . does not work very well. Hence we will consider solitonlike
whereks andkg were defined in Sec. II. Then the height- o, citations as described in this section. The nonlinear fluc-

height correlation function is easily obtaing2o]: tuations of the polymerized membranes will be described in
- terms of this idea in Sec. V.
S 1 1 . €9 It should be noted first that, for curved membranes, it is
(W(M)w(0))= (2m)2 Ef dq 2K no longer possible to neglect stretching completely. Other-
—ZSJrkBﬁ4 wise, no deformations are allowed at all due to geometrical
R constraintsthe monotypy theorejm

X

4 When we apply a localized force at one point on the
~ — — 2 il —
71_<W ) kei ( z )

(20) sphere, it makes a small dent of radigisn the linear ap-
proximation, as described earlier. If we increase the strength
of the applied force beyond a certain critical value, the sur-

where keik) is a Kelvin function of zeroth order, which is face will abruptly buckle, and it is no longer in the linear

— /4 at the origin and decays rapid(pscillating to zero  regime. Since the membrane is assumed to be very inexten-

beyond x~1 [30]. Note that the phononsthe bending sible, any allowed deformations should be approximately
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isometric transformations, i.e., a mirror transformation in this IV. MECHANICAL CRUMPLING

case, of a circular region of the membrane across an imagi- Understanding mechanical properties of tethered vesicles
nary plane which intersects the sphere. Then, since we as- 9 prop

.~ 1s very important for various reasons: Red blood cell mem-
sume that thespontaneous curvaturef the membrane is y imp

zero, or that the membrane is homogenearssymmetrig branes, for example, have evolved to endure the strong flow

along its thickness when it is flattened, most of the elastig'e.Id of the blood stream. !_lposomes, used for drug delivery,
ill also have to be designed to stand strong stress. And

energy will be concentrated near the geometric edge. Th )
: ) o ; ere are some bacterial cells known to have tough mem-
width of this severely bent strig is determined by the com- o .
branes to resist high turgor pressure, which is normally con-

petition between the stretching and the bending energies, 3 : ) .

: . - . rolled by cell walls in plant§31]. In this section we study
in the linear case, and so is independent of the size of the . : ;
dimple. The formation energy of a dimple can be estimate ome mechanical properties of the spherical membrane due

by aoplving alinear theory on this bending strip as follows © the nonlinear dimplelike deformations introduced in
[13/9] pplyIng y 9 P Sec. lll. The membrane is assumed to be made of homoge-

Let us suppose that the applied force makes a dimple Jpeous material with mass densjy (Thus its mass density

radiusr or heighth=r?/R. Since the displacement is local- per unit area 'SP.') : L

ized over the width~d along a circle of radius, w is of The deformation energy for a dimple of sizés given by
order rd/R and hencelu,4| is of order ¢d/R)/R from Eq. (26) or by

Eq. (3) and|w,g| of order (d/R)/d? from Eq. (4). There-
fore, from Egs.(5) and (6), the stretching energks is rd
times kg(rd/R?)?2, and the bending energdyg is rd times
kg(rd/Rd?)2. That is,

F(h)= xh®? (29)

whereh=r?/R is the height or vertical displacement of the
dimple andx = kR%®? When we place this sphere on the flat

kgr3d3 surface in the gravitational fielg, it will buckle at the bot-
ST (24 tom due to its weight(See Ref[32] for different limits) If
R we assume small deformation, that is, if the mass of the
. s.pherem=.47rR2tp is small compareq t@?g, then the equi-
FB:kB—;- (25) librium point can be found by minimizing the total energy:
Rd 5(—mgh+ kh%¥?=0. (30)

Again, we neglect prefactors of order unity when they are o ) )
not essential. By minimizingFs+ Fg with respect tod, we '€ equilibrium radius ; is

obtain tRpg
3 re= . (32)
F(r)=«r=, (26) K
where This is of order 10° m using the same parameters as in
previous sections. We now neglect the gravitational effect
x~Jkskgd/R3~E(t/R)%2, (27  and assume that the surface is very sticky, that is, the free

energy is lowered when the sphere is in contact with the
which is of order 10° N/m? if we use the numbers given surface by the amount proportional to the area of the contact.
earlier. The width of the bending stripis the same ag, and ~ 1hen
this provides the minimum length scale of this problem. The
formula forF(r) is valid only if r is much larger thag. For
a homogeneous membrane this translates into

8(—x2mrd+ «kr3)=0, (32

wherey is the adhesion coefficient. The equilibrium radius is

r>(tR)V2 (2 hen
Xd 1/2
The minimum-energy scale for bucklinds;(d), obtained rC:<_ (33
from Eqg. (26), is the same as that defined as the point where K

the linear theory breaks dowitq. (23)]. We next consider the interaction between two adhesive

In linear theory the fluctuation was symmetrical, that is, . . . X
(w) was zero. The deformation due to buckling is howeverves'des' If their strength of adhesion is proportional to the
' ¥ ‘contact area as in the previous example, the equilibrium ra-

unidirectional. When we describe shape fluctuations based. i S
on this type of nonlinear deformations in Sec. V, we thus 1us of a dimple tumns out o bg/«. Hence the nghpnum
concentrate on the average height rather than on its fluc- distanceD between the centers of the two vesicles is
tuation, Aw?=(w?)—(w)2. Note that(w) provides the up-
per bound forAw due to this unidirectionality. Before we D=2
study the thermal fluctuation of the membrane due to the

creation of dimples, we first present some implications of

this nonlinear deformation to the mechanical properties ofNote that the equilibrium state is doubly degenerate due to
polymerized vesicles in Sec. IV. the symmetry shown in Fig. 2. For a dense solution of these

2
R X

e (34)
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(a O

figurations are possible with equal energy cost, as showa) iand
(b). The sizes of the dimples are exaggerated for the sake of clarity. O O

O C 0 5 O

FIG. 2. Adhesion between two vesicles. Two symmetric con- Q : O O

spheres, or a spongelike solid phase, a residual entropy due
to this degeneracy, similar to that of ice crystal, should be
observable. o ) ] )
Finally, we consider a spherical membrane in a pressure FIG. 3 A _schematlc picture of a typical conflguratlon of non-
field. For instance, we can deflate a tightly sealed membran%verlapp'ng rings. The curvature .Of the underlying surfeoem-
by sucking out the solution inside. Let us first consider the’ra"® IS neglected, as explained in the text.

easier case of controlling the volume. If we reduce the voI—_I_hiS is of order 10% N/m2. It should be noted that this

e _4_p3 . > ,
ume inside the sphere froo=3mR" to V<Vy, what jngtapility does not necessarily mean the total collapse of the

would be the minimum energy conformation of the spherezpnherical membrane when an external pressure larger than
Suppose there is one dimple on the surface with the radiuge critical one is applied.

r1. Herer,; can be computed from simple geometrical con-
siderations, and it turns out that;~(AVR)¥4 where

AV=Vy—V. The energy cost to create this dimple is then
k(r1)3~(AV)¥* If we had two dimples of equal size in- A. System of hard rings

stead, then the radius would ber;3"* and hence the en-  Under the assumption of strong inextensibility and flex-
ergy required would be increased by a factor mzl’é;/“_ That ibility, we have shown that large deformations of a closed
is, one large dimple is preferred over many small dimplesspherical membrane can be accounted for in terms of buck-
This is typically observed in macroscopic world, such asling of small circular parts into their mirror images, resulting
when we deflate a soccer ball by making a small hole on itin small dimples on the surface. Since we exclude the possi-
Now let us app|y a pressure differenpeacross the mem- blllty of Singular deformations in this paper, no two dlmples
brane. This can be done, for example, by changing osmotigan overlap with each other. Then we can map the low-
pressure across a semipermeable membrane. Here we orimperature phase of the fluctuation of a spherical membrane
consider the situation in which the outside pressure is highei© @ system of nonoverlapping dimples. Furthermore, since
than that inside the vesicle. Let us suppose, for the momenfe are assuming that the membrane is homogeneous along
that the membrane buck|éat one point, as in the previous its thickness, buckled regions can also accommodate other
paragraph due to the app“ed pressure difference. Then théjlmples which have the same Sign of the radius of curvature
energy cost due to buck"ng will be Compensated for by theaS that of the Original undeformed membrane. Then this hi-

V. THERMAL FLUCTUATIONS

work done by the pressure, that is, the total energy is erarchical buckling can continue indefinitely, only to be lim-
ited by the two length scales andR. Hence we can regard
pré our system of dimples as that of nonoverlapping rings on a
F:Kr3—F, (35)  two-dimensional surface. The curvature of the underlying

surface, i.e., the membrane, will be neglected, since we are
interested in a length scale much smaller than the size of the

By minimizing this equation with respect to we obtain vesicle,R. A schematic picture of a system of hard rings on
a plane is shown in Fig. 3.
kR Let us then consider a system Mfhard rings of widthd
rc:F- (36) at a fixed temperatur@ 1. N is determined by the condition

that the free energy should be at a minimum with respect to
Since this is an unstable equilibrium, the creation of dimples\éﬁgzmog}eomthéggrgggvmiyélOr‘]ﬁe?%glussst ?ogzr:rnodbza(l:g?,lnslgilhe
will be suppressed. But dimples larger thanwill sponta- P

neously grow out of the valid regime of this description. The?uunrztti)grrw gfcz::g;eIivrril?(;ncggiilrl\(l)?/:/js.' The canonical partition
maximum pressure differengg, which the sphere can stand '

is then defined as that whep reaches, that is, 1 N i

z=——]I du(r)dxie ", (38)

kR Et? Nid =t

LAy 3
Par="¢ R2 S where
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N R R Hence the radius of theesicleis reduced fromR to R
sz F(ry)+ E U(ri,NiirjAj). (39 —(w) due to thermal fluctuations. The high-temperature be-
=1 < havior is similarly obtained with the following result for the
average height increase:
F(r;) is the self-energy of theth ring, Eq. (26), and the
potential U(r; ,Xi o ,XJ-) represents the hard “core” inter- _ daz 1
action betweerith and jth rings. The integration measure <W>_EBKd3.
over the radiidu(r;), is taken to belr;. This seems to be a
natural choice in view of the mapping from the original Sinced~RY? and k~R™ 5?2, (w) has an overall linear de-
problem to this hard ring system. pendence ofR at high temperatures in contrast with the lin-
Now, as we mentioned above, we assume that the fluctuaar case, Eq(22). This means that the membrane is wildly
tion in h;=rZ/R, for all the dimples present, gives a good fluctuating due to this buckling mode, if we do not include
measure of the shape fluctuation of the sphere itself, for #e interactions between the dimples.
“proper” range of temperatures which will be clarified
shortly. Therefore, from now on, we will concentrate on this B. Variational solution

hard ring system. First, if we neglect the hard-rim interac- died ) . . . di
tions between rings, then the partition function is easily in-_ /€ Studied noninteracting gas of rings in Sec. V A, and it
tegrated. is clear that at a high temperature the rings will proliferate,

and hence we need to include the “excluded volume inter-
N action” between them. We incorporate this hard-rim interac-
_ 1 frmaxdrf dx. e~ BF(D) (40) tion using a variational method as follows.
O NrgdNiEL Sy ! ! ’ First, we define th@ne-body distribution function

(45)

min

N
wherer ,i=d is introduced as an ultraviolet cutoff. As was p(r,X)= 2 S(r—r)8(N—X;) ). (46)
explained in Sec. 1Vd provides the minimum length scale i=1

in this picture. Definingf dA =V, we obtain Integrating this over gives the number density of dimples,

e\ N N/V, which is independent of position for a homogeneous
Ve Fx ) system, and by integrating over the sphere we obtain the

N
s 1
@ Brd3 radius distribution function

A *
e Bl
N!dgNi];[l fd drie N!

ZOZ

(41 N
. p<r>zfdxp(r,x>= > or=r)). (47
where we assumed the temperature is low enough to replace i=1

I max (<R) by =. xd® provides the elementary energy scale . o ) )
in this model, as in the original probleiiSee the discussion We can easily obtain this function at low temperature using

below Eq. (28).] the ideal dimple gas approximation
Now, by extremizing the free energy=— 8~ 1InZ with v
; . o
respect to the number of rind$, we obtain po(r)= —e prr3. (48)
v e B’ o . .
No=— ' (42)  The distribution functiorp(r) has all the necessary pieces of
d? Bkd? information regarding properties of single rings. Among oth-
ers, one can compute the average size of a ring as well as its
—BGo=Nj. (43 higher moments. For example,
. . . ) ) 1
Recal_llng the th_err_no_dyna_lmlc relatldéf—_P_V Whe_n the (H)oEJ dr rPo(r)/J dr po(r)=d| 1+ ,
chemical potential is identically zero, this is just an ideal gas d d Brd3
equation as it should be. Note, however, tRattmains con- (49

stant independent of the volune o o _
At a very low temperature, the average number of dimplevhere the subscripts and 0 indicate that the average is
will be very small compared t&/d?, and hence the prob- taken for a single ring at low temperature. We note, in pass-
ability of two dimples overlapping will be low. Therefore N9 that the radlgs of_a dlmple_|r11creases exponentially when
this phantom ring system should be adequate to describe tf{B€ temperature is raised fropi *=0.
low-temperature phase. Whgh 1< xd?, the average height Now we include the hard-rim interaction in the calcula-
(or rather depthof the deformation due to the dimples can ton of _the free energy through the var_lat|onal method using
be estimated by multiplying the minimum height d/R by p(r). First recall that the system hakdimples on average,

the average area covered by dimplegd?/V. That is, and that each dimple has a radiuswith the probability
p(r)/N. Then we neglect the fluctuations jr{r) and con-

sider a system oN dimples of fixed radii with the distribu-
- _ (44) tion p(r). We apply a Flory-type argumen83] and obtain
R Bkd® the following free energy:

d2 e—,BKd3

(w)
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FIG. 5. (N) vs log,q8~ 1. The system size is 2020. The error
bars are about the size of the symbols. This curve is to be compared
with Eq. (54), which predicts the low-temperature exponential
growth and the less steep saturation at high temperature.

FIG. 4. logge(r) vsr at =0 (<), B=0.1 (O), andB=1
(). The system size is 3030. The systematic wiggling of data
points is due to the presence of a lattice as explained in the text.

G=E-pB!s, (50 explosively aroung3~1=1, while the size of an individual
dimple remains almost constant. The number of dimples
where saturates as soon as the temperature rises gbove 1. The
saturation value 40 is about the maximum number of rings
E= KJ' dr r3p(r) (51) yvith vyhich one can pack in thg 2020 system. The interest-
ing thing is that the average size of rings still grows around
B~ 1=10 with the total number of rings constant. This also
P(r)d3) B 277(f dr rp(r))z saturates abovg™*=100.

S= _f dr p(r)ln( eV \% Now we calculate the average height of this deformation
(52 due to buckling using simple counting as was done in
Sec. V A. This is only possible because the radius of each

Note that this variational free energg has the form of ring saturates at a fixed value as shown in the simulation.
Virial expansion to second order. The result is

We minimize the free energy with respect g6r), and

i . 7 ) dz
obtain the following results at high temperature: (W)= Eei'BKdB' (55
p(r)= Ee*ﬁ”sf”d, (53 This should be compared with the low-temperature behavior

of the phantom ring system, E@44), in which the exponen-
tial factor is also dominant. In contrast, E¢p5) saturates to
a fixed value at a high temperature unlike E¢5). It should

be noted that the saturation vald&R is of the same order
as the thickness Hence, noting thatw) is the upper bound

As the temperature grows to infinity, the average nunter for Aw, We'conclude that the_ vesicle remains almost per-
approached//d? asymptotically.p(r) takes a simple expo- fectly spherical even at very high temperatures.
nential form /d3)e~"d.

We performed a computer simulation on a square lattice
with periodic boundary conditions. The lattice constant was
taken as unity as well ag. The diameter of a ring was
discretized to take only integer values. The minimum radius
was set to 1. The system sizes were restricted te 2D or
30X 30, because the maximum diameter of a ring was around (ri) 110
10 even a{B=0.

The radius distribution functiop(r) is plotted in Fig. 4 1.05
for =0, 0.1, and 1 from the top. Even though there are not
enough number of data points due to the underlying lattice, 1.00
the transition from the exponential decay at high temperature o1 e ““'i‘o
to faster than exponential at low temperatures is clearly vis- ’ log,o 87!
ible. The oscillations in the plots are due to the fact that we
allowed half-integer values for radii. FIG. 6. (r;) vs log8~ . The system size is 2020. The error

The average number of dimples is shown in Fig. 5, anthars are about the size of the symbols. The average radius of the
the average radius of a single ring is plotted in Fig. 6. As caftings increases about 20% when the temperature grows one hun-
be seen from these figures, the number of dimples increasesedfold fromp~1=1.

N= — g e, (54)

100

1000

—
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Before we close this section, there is one last commenand thickness= 108 m, we showed that, beyond the length
regarding the calculation ofw). Due to the presence of scaled~10° m and the temperaturd 1~1 K, the fluc-
nested dimples the average radius of the dimples is not diuation of the membrane is well accounted for in terms of the
rectly related to the height change. For example, the firstthermodynamic properties of the system of nonoverlapping
level dimple contributes positively tw whereas the second- rings which represent the buckled regions. As it turns out,
level dimple contributes negatively. However, as we saw irthe spherical membrane remains rigid even though it is made
the variational solution and the simulation results, the averof a very flexible material. This is due to the entropic inter-
age sizes of the dimples are very small, hence the probabilitgction between thermally generated hard rings. Our theory

of having nested ones are exponentially small. can be easily verified by light-scattering experiments in the
visible spectrum range. We are currently trying to calculate
VI. CONCLUSION the structure factors for fluctuating spheres. This, however,

] ) ) requires a more elaborate formalism than presented here
. Mechgnlcal and thermodynamical properties of _polymer-since we need to calculatéw directly. Even though we
ized vesicles have recently attracted a lot of attention due tf5ye considered only spherical membranes in this paper, a
their relevance to biology and biotechnology. In general, poyeneralization to arbitrary curved membranes should be

lymerized membranes are very inextensible and flexible agirajghtiorward, and the idea of localized nonlinear deforma-
the same time. We studied the shape fluctuations of a closgg,, should still be useful.

spherical membrane in this limit. We first showed that one

needs to go beyond the linear theory to account for the fluc-

tuations. We then claimed that the dimplelike localized de-

formation could be a building block of the nonlinear theory. This work was supported by NSF Grant No. DMR-

The obvious advantage of this approach is that the actu#l419362, and acknowledgment is made to the Donors of the

calculation is done in the linear regime. Petroleum Research Fund, administered by the American
For a red blood cell membrane with radiBs=10"* m  Chemical Society, for partial support of this research.
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