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Conformation fluctuations of polymerized vesicles in the inextensible and flexible limit

Hyoungsoo Yoon* and J. M. Deutsch
Physics Department, University of California, Santa Cruz, Santa Cruz, California 95064

~Received 23 December 1996!

We study conformation fluctuations of a tethered membrane of spherical shape. The membrane is assumed
to be both inextensible and flexible. We first study linear fluctuations and show that they are irrelevant in this
limit. Nonlinear fluctuations can be described in terms of isometric buckling of local circular portions of the
membrane. Configurations of buckled regions on the membrane are then modeled as a system of rings whose
excitation energies are the elastic energy cost of buckling. The rings should be nonoverlapping with one
another due to geometrical constraints. We study the thermodynamics of this system using a variational
method, and the results are interpreted in terms of the shape fluctuations of the membrane itself. Our results
indicate that there is no roughening transition when we raise the temperature. In other words, the membrane
remains ‘‘flat’’ at all temperatures even though it is made of very flexible material.@S1063-651X~97!02209-5#

PACS number~s!: 87.22.Bt, 05.202y, 02.40.Hw
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I. INTRODUCTION

Over the last several years, polymerized or tethered m
branes@1–4# have been extensively studied, partly due
their relevance to the biophysics of cell membranes@5#.
Mammalian red blood cells, for example, have lipid bilay
membranes with cross-linked spectrin networks ancho
which play important roles in determining the equilibriu
shapes and the fluctuations around them@6#. The spectrin
networks have been extracted and their fluctuations h
been investigated by various experimental methods@7,8#,
giving slightly ambiguous results, especially regarding
presence of the so-calledcrumpled phase@9–15#. Cross-
linked synthetic polymer networks@16# or exfoliated graph-
ite oxide crystals@17,18# have also been used in experimen

In theoretical studies, polymerized membranes are usu
modeled as elastic sheets, since microscopic details wil
irrelevant on large length scales. The mesh size of spec
networks, for example, is of order 1027 m, but often we are
interested in fluctuations on the order of 1025 m. In this case,
membranes can be idealized as purely two-dimensional
faces with bending rigidities, in-plane shear, and compr
sional moduli@19,20#.

The energies due to in-plane strain are, in general, m
larger than those from bending, as will be illustrated sho
for cases of thin elastic sheets and red blood cell membra
Hence, if bending without stretching or shearing is allow
it will dominate the low-temperature fluctuations. Howev
stretching almost always accompanies bending except,
example, when flat elastic sheets are rolled@21#. Hence, in
general, the undulations whichlocalizestretched or sheare
areas will be the dominant modes.

This type of shape deformations was first studied
Lobkovsky et al. @22# for membranes whose ground-sta
shapes are flat. For flat membranes the above argumen
plies only for large-amplitude fluctuations or forced crum
pling, since the in-plane strain is second order in bend

*Present address: Basic Science Research Institute, Postech
hang, Korea 790-784.
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amplitudes and hence in-plane modes are irrelevant in
harmonic approximation. However, the situation is differe
for ‘‘curved’’ membranes, for which stretching or shearin
modes are the same order effects as those from out-of-p
undulations. Polymerized vesicles@23–26#, for example,
cannot bend without stretching. This is purely for geome
cal reasons, and this behavior of closed surfaces becom
very inflexible due to slight stretchability is known as th
monotypy theorem in classical elasticity theory@19#.

Let us consider an elastic membrane which has a shap
a spherical shell in its undeformed state. Suppose we a
an external force at one point on the surface. If it is perfec
inextensible, then, even though it is extremely flexible,
would not allow any deformation for the reason just d
cussed. Now, if we add a slight extensibility along with
finite flexibility, it will make a small circular dent when
acted on by an external force. The size of the dent will
determined by the competition between the two ene
terms, bending and stretching: The more flexible and
more inextensible the material is, the smaller the size will
For a small enough force the size of the dent is almost c
stant, but when we increase the force beyond a certain c
cal value the surface will buckle@27# and the size of the
dimple will grow. We claim that this dimplelike localized
deformation of circular shape is the most relevant one
describing the fluctuations of spherical membranes, wh
are very inextensible and flexible at the same time.

We focus in this paper on such shape changes of cur
membranes due either to external forces or to thermal fl
tuations. For mathematical simplicity we restrict ourselves
membranes with constant radii of curvature, i.e., clos
spherical shells. The membranes are assumed to beinexten-
sible ~or incompressible! and flexible, that is, the character
istic in-plane elastic energy is supposed to be much lar
than the typical bending energy. It should be noted that
is the complementary limit of that usually studied throu
renormalization-group methods. The in-plane moduli a
known to be renormalized to zero at large length sca
while the bending rigidity diverges due to its nonlinear co
pling with in-plane phonon modes@2–4,9#. This implies that
the membrane is in the flat~noncrumpled! phase. Therefore
Po-
3412 © 1997 The American Physical Society
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56 3413CONFORMATION FLUCTUATIONS OF POLYMERIZED . . .
our model should be considered with the understanding
it provides a valid description of fluctuation of membran
only below a certain length scale and at low enough temp
tures. This will be explained later in more quantitative term

The outline of this paper is as follows. In Sec. II, we fir
review some basics of classical elasticity theory for tw
dimensional surfaces suitable for a statistical mechanics
proach. We then present precise definitions of inextensib
and floppiness, and their limits of validity are clarified. Th
section provides the motivation for our study of inextensi
and flexible membranes. Both linear and nonlinear con
mation changes due to external forces are discussed in
III, which will be the basis for the main argument of th
paper.

In Sec. IV, the forced crumpling of spherical membran
in various circumstances will be described. We will restr
our discussion to nonsingular deformations throughout
paper. This nonlinear and nonsingular regime is only p
sible because of the initial curvature in the membranes.
flat membranes, large deformation~other than simple rolling
or corrugation! immediately introduces singularities as d
scribed by Lobkovskyet al. @22#. The elastic energy is con
fined along a line joining two singular points in this cas
whereas the line makes a closed loop in our case. The in
action of polymerized vesicles with smooth surfaces w
also be briefly mentioned.

We then present the thermal fluctuation of closed sph
cal shells in Sec. V. First, we argue that dimplelike ‘‘eleme
tary’’ excitations are the building blocks of the shape flu
tuations. Then we formulate a statistical mechanical prob
of nonoverlapping dimples, and solve it through a variatio
method. We show that the membrane remains ‘‘flat’’ due
the interactions between these dimples in the suitable li
Finally, in Sec. VI we summarize our results and pres
directions for future research.

II. MODEL

We consider a closed elastic membrane with a cons
radius of curvatureR, i.e., a hollow spherical shell. Th
membrane is assumed to be very inextensible and very
ible at the same time. We assume that it has a small but fi
thicknesst, which is uniform throughout the surface.

Any two-dimensional geometric surfaces embedded
three-dimensional Euclidean space can be characterize
two bilinear functions: the first fundamental form, i.e., t
induced metric tensor, and the second fundamental fo
which represents the extrinsic geometry of the surface@28#.
Therefore the elastic energy of a thin membrane, in the li
of t→0, can be idealized to consist of two separate con
butions: one from the in-plane strain and the other from
bending in three-dimensional Euclidean space@20#.

We use, throughout this paper, a local coordinate sys
around an arbitrarily chosen point on a membrane such
it is the projection of the Cartesian coordinate system of
tangent plane to the undeformed membrane at that p
~Monge representation!. We uselW 5(lx ,ly)5(x,y) to rep-
resent the internal coordinate on the membrane, then, in
coordinate system, the first and the second fundame
forms Gab andBab are represented as
at

a-
.

-
p-
y

r-
ec.

s
t
is
-

or

,
r-

l

i-
-
-
m
l

o
it.
t

nt

x-
ite

n
by

,

it
i-
s

m
at
e
nt

is
tal

Gab5S 1 0

0 1D , ~1!

Bab5S 1

R
0

0
1

R

D , ~2!

where we have assumed thatR is much larger than the siz
of the coordinate patch, which is in turn much larger than
typical length scale in the problem.

We useuW 5(ux ,uy) to denote the tangential displacemen
andw to denote the vertical~inward! deflection of the mem-
brane from this ground-state conformation. In general,
magnitude ofuW will be very small compared tow, because
the membrane is assumed to be very inextensible. The
plane strain tensoruab and the bending strain tensorwab are
represented, to the lowest order, by

uab5
1

2S ]ua

]lb
1

]ub

]la
22BabwD1

1

2

]w

]la

]w

]lb
~3!

and

wab52
]2w

]la]lb
. ~4!

Here, and throughout this paper, Greek letters such asa and
b are used to denotex and y components of the two-
dimensional vectors. Note that the coordinate patch sho
be small enough so that]w/]la is always bounded for both
a5x andy.

The elastic energy densitiesFS andFB due to stretching
and bending, respectively, are given, up to the second or
as follows~Hooke’s law!:

f S5 1
2 kS1~Tr uab!21kS2Tr~uab!2, ~5!

f B5 1
2 kB1~ Tr wab!21kB2 Tr~wab!2, ~6!

where the coefficients are the two-dimensional elastic c
stants, whose physical meanings are

kS5kS11kS2 bulk modulus,

kS2 shear modulus,

kB5kB112kB2 bending rigidity,

2kB2 Gaussian rigidity.

Note that the Gaussian rigidity term off B (;Detwab) can
be safely neglected for closed membranes from the Ga
Bonnet theorem@28#.

When the membrane is made of a homogeneous mat
with ~three-dimensional! Young’s modulusE and Poisson
ratio s, these constants are expressed as follows@19#:

kS15
sEt

12s2
, ~7!
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kS25
Et

2~11s!
, ~8!

kB15
sEt3

12~12s2!
, ~9!

kB25
Et3

24~11s!
. ~10!

Note thatkS1'kS2 andkB1'kB2, sinces is a small positive
number (&1/2) for most materials. This is generally true f
other inhomogeneous membranes such as biomembra
Since we are mainly interested in the relative importance
stretching and bending contributions to the elastic energy
will only use two symbolskS andkB to represent the typica
sizes of the in-plane modulus and the bending rigidity,
spectively, unless otherwise indicated.

From the above expressions, it is easy to see that
bending moduli become quadratically smaller int relative to
the in-plane moduli ast→0; that is to say, the membrane
more inextensible than rigid-to-bending as its thickness
comes small. For our polymerized membranes of inter
whose lateral dimensions are typically much larger than
thickness, this is usually true as well. For mammalian
blood cell membranes of thicknesst;1028 m, kB is around
10220 J, whereaskS is around 1022 N/m. Even though the
thickness is fixed for this case, the numbers indicate
kB is aboutt2 times larger thankS .

The total energy is obtained by integrating the sum
f S and f B over the entire surface,

F@uW ,w#5E
membrane

dlW ~ f S1 f B!, ~11!

where the invariant integration measure has been substit
by that of the undeformed sphere,A Det(Gab)dlW , which is
none other than that of a plane,dlW . This integration has to be
done in many coordinate patches.

The fluctuations of elastic membranes can be studied
principle, by calculating the partition functionZ from this
‘‘Hamiltonian,’’ F,

Z5E DM @uW ,w#e2bF[uW ,w] , ~12!

where the functional integration measureDM @uW ,w# includes
the self-avoiding constraint, andb is the inverse tempera
ture, in units of the Boltzmann constant. In general, calcu
ing Z is a formidable task, if not impossible. In this pape
we restrict ourselves to a special class of membranes w
are inextensible and flexible, whose meanings will beco
clear in the following discussion.

Let us first estimate the relative importance of the t
terms in the elastic energy, Eq.~11!. If an initially flat mem-
branewarps aboutw over an arbitrary length scalel , then
uuabu is of order w2/ l 2 and uwabu of order w/ l 2 from
Eqs. ~3! and ~4!. Therefore, from Eqs.~5! and ~6!,
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'

kS

kB
w2. ~13!

For the case of membranes made of homogeneous mat
kS /kB;t22 as explained earlier, and hencef S / f B;w2/t2.
Since we are interested in large length scale fluctuations,
we assume thatl is large enough such thatw2@t2 ~or
w2@kS /kB , in general! in this paper, the above argume
justifies our study of membranes which are inextensi
( f S→`) and flexible (f B→0). Below a certain length scal
l c , however, the bending energy always dominates the
plane energy. Without this length scalel c;AkB /kS or ;t,
the membrane would become too rough to be described
classical elasticity theory. This small-scale smoothness
makes it possible to take the local coordinate systems defi
earlier.

If we consider large deformations which are compara
to the linear size of membranes, that isw' l , such as in the
case where a flat membrane is bent into hemispherical s
the ratio f S / f B for homogeneous membranes is just t
square of the aspect ratio between the linear size and
thickness, which can be as large as 1000 in most case
interest, yieldingf S / f B5106. We also obtain similar figures
for cell membranes of typical sizeR;1024 m.

For aplanar membrane (R→`), however, deformations
without stretching are possible, and hence these fluctuat
will be dominant modes at low temperatures. The compl
inextensibility imposes the constraintsuab50, that is,

2
]ux

]x
1S ]w

]x D 2

50, ~14!

2
]uy

]y
1S ]w

]y D 2

50, ~15!

]ux

]y
1

]uy

]x
1

]w

]x

]w

]y
50 ~16!

in an appropriate coordinate system. The only allowed so
tions are simple corrugations of a membrane@21# as shown
in Fig. 1. For curved membranes, this mode of fluctuation

FIG. 1. Corrugation of a planar membrane in thex direction.
This is the only mode of deformation for completely inextensib
membranes.
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56 3415CONFORMATION FLUCTUATIONS OF POLYMERIZED . . .
not allowed due to geometrical constraints, and the bend
and the stretching modes arealwayscoupled as will be dis-
cussed in Sec. III.

III. SHAPE DEFORMATIONS

A. Linear regime

Elasticity theory is usually nonlinear from two origin
physical and geometrical. Since we always assume phys
linearity in this paper, that is, the material is assumed to o
Hooke’s law @Eqs. ~5! and ~6!#, the reason why the mode
partition function Eq.~12! leads to the nonlinear equation
of state is purely geometrical.

Let us also assume geometrical linearity in this subs
tion, which, in particular, implies assuming a very largeR.
Then we can neglect the nonlinear terms in the strain ten
uab andwab . We further assume thatux anduy are so small
that we can neglect them entirely. Then we have only o
scalar field of displacement on the sphere,w. Now we can
easily compute the partition function for this system. First,
the local Cartesian coordinate system defined in Sec. II,
strain tensors become

uab5S 2
w

R
0

0 2
w

R

D ~17!

and

wab5S 2
]2w

]x2
2

]2w

]x]y

2
]2w

]x]y
2

]2w

]y2

D . ~18!

From Eqs.~5!, ~6!, and~11!, it is easy to obtain

F5E dlW F2kS

R2
w21

kB

2
~¹W 2w!2G

5 1
2 E dlW wS 4kS

R2
1kB¹W 4D w, ~19!

wherekS and kB were defined in Sec. II. Then the heigh
height correlation function is easily obtained@29#:

^w~lW !w~0W !&5
1

~2p!2

1

b E dqW
eiqW •lW

4kS

R2
1kBqW 4

'2
4

p
^w2& kei S u lW u

j
D , ~20!

where kei(x) is a Kelvin function of zeroth order, which i
2p/4 at the origin and decays rapidly~oscillating! to zero
beyond x;1 @30#. Note that the phonons~the bending
g

al
y

c-

rs

e

e

waves! become massive due to the nonzero curvature of
initial conformation. Its characteristic length scale is giv
by

j'S kB

kS
D 1/4

R1/2'~ tR!1/2, ~21!

which is around 1026 m using the numbers given earlie
The on-site fluctuation of the radial displacement, defined
Eq. ~20!, is

^w2&'
1

b

R

~kBkS!1/2
'

1

b

R

Et2
. ~22!

Here and throughout this paper, constants of order unity
omitted. Note that the root-mean-square fluctuationA^w2&
grows with the exponent12 as the radiusR increases. Hence
the linear fluctuation will be irrelevant for a large spheric
membrane. However, more importantly, the linear theo
breaks down when the free-energy contribution from the
term in Eq. ~3! becomes comparable to that of the line
order, at which point the amplitude of the radial fluctuati
A^w2& is of the orderj2/R. That is, the following should
hold,

Rb21!S kB
3

kS
D 1/2

'Et4, ~23!

in order for the linear theory to be applicable. The typic
value of the right-hand side is around 10228 J m. This trans-
lates, for a spherical membrane withR51024 m, into a criti-
cal temperature below 1 K. Therefore we conclude that o
has to go beyond the linear theory to explain the fluctuati
of spherical membranes of ‘‘typical’’ size in the physical
interesting limit.

A more general case without the assumption of inexten
bility ~or ux5uy50) in the linear theory, was studied in Re
@24#. In this study, the longitudinal phonon modes we
found to be coupled with the radial undulations.

B. Buckling

If we retain nonlinear terms in the partition function, th
radial ~vertical! phonons are no longer independent, and
need to take into account the interactions among them
fact, the interactions are so strong that perturbation the
does not work very well. Hence we will consider solitonlik
excitations as described in this section. The nonlinear fl
tuations of the polymerized membranes will be described
terms of this idea in Sec. V.

It should be noted first that, for curved membranes, it
no longer possible to neglect stretching completely. Oth
wise, no deformations are allowed at all due to geometr
constraints~the monotypy theorem!.

When we apply a localized force at one point on t
sphere, it makes a small dent of radiusj in the linear ap-
proximation, as described earlier. If we increase the stren
of the applied force beyond a certain critical value, the s
face will abruptly buckle, and it is no longer in the linea
regime. Since the membrane is assumed to be very inex
sible, any allowed deformations should be approximat
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3416 56HYOUNGSOO YOON AND J. M. DEUTSCH
isometric transformations, i.e., a mirror transformation in t
case, of a circular region of the membrane across an im
nary plane which intersects the sphere. Then, since we
sume that thespontaneous curvatureof the membrane is
zero, or that the membrane is homogeneous~or symmetric!
along its thickness when it is flattened, most of the ela
energy will be concentrated near the geometric edge.
width of this severely bent stripd is determined by the com
petition between the stretching and the bending energies
in the linear case, and so is independent of the size of
dimple. The formation energy of a dimple can be estima
by applying alinear theory on this bending strip as follow
@19#.

Let us suppose that the applied force makes a dimple
radiusr or heighth5r 2/R. Since the displacement is loca
ized over the width;d along a circle of radiusr , w is of
order rd/R and henceuuabu is of order (rd/R)/R from
Eq. ~3! and uwabu of order (rd/R)/d2 from Eq. ~4!. There-
fore, from Eqs.~5! and ~6!, the stretching energyFS is rd
times kS(rd/R2)2, and the bending energyFB is rd times
kB(rd/Rd2)2. That is,

FS5
kSr 3d3

R4
, ~24!

FB5
kBr 3

R2d
. ~25!

Again, we neglect prefactors of order unity when they a
not essential. By minimizingFS1FB with respect tod, we
obtain

F~r !5kr 3, ~26!

where

k'AkSkBd/R3'E~ t/R!5/2, ~27!

which is of order 1025 N/m2 if we use the numbers give
earlier. The width of the bending stripd is the same asj, and
this provides the minimum length scale of this problem. T
formula forF(r ) is valid only if r is much larger thanj. For
a homogeneous membrane this translates into

r @~ tR!1/2. ~28!

The minimum-energy scale for buckling,F(d), obtained
from Eq. ~26!, is the same as that defined as the point wh
the linear theory breaks down@Eq. ~23!#.

In linear theory the fluctuation was symmetrical, that
^w& was zero. The deformation due to buckling is, howev
unidirectional. When we describe shape fluctuations ba
on this type of nonlinear deformations in Sec. V, we th
concentrate on the average height^w& rather than on its fluc-
tuation,Dw25^w2&2^w&2. Note that^w& provides the up-
per bound forDw due to this unidirectionality. Before we
study the thermal fluctuation of the membrane due to
creation of dimples, we first present some implications
this nonlinear deformation to the mechanical properties
polymerized vesicles in Sec. IV.
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IV. MECHANICAL CRUMPLING

Understanding mechanical properties of tethered vesi
is very important for various reasons: Red blood cell me
branes, for example, have evolved to endure the strong
field of the blood stream. Liposomes, used for drug delive
will also have to be designed to stand strong stress. A
there are some bacterial cells known to have tough m
branes to resist high turgor pressure, which is normally c
trolled by cell walls in plants@31#. In this section we study
some mechanical properties of the spherical membrane
to the nonlinear dimplelike deformations introduced
Sec. III. The membrane is assumed to be made of homo
neous material with mass densityr. ~Thus its mass density
per unit area istr.!

The deformation energy for a dimple of sizer is given by
Eq. ~26! or by

F~h!5 k̄h3/2, ~29!

whereh5r 2/R is the height or vertical displacement of th
dimple andk̄ 5kR3/2. When we place this sphere on the fl
surface in the gravitational fieldg, it will buckle at the bot-
tom due to its weight.~See Ref.@32# for different limits.! If
we assume small deformation, that is, if the mass of
spherem54pR2tr is small compared tok̄ /g, then the equi-
librium point can be found by minimizing the total energy

d~2mgh1 k̄h3/2!50. ~30!

The equilibrium radiusr c is

r c5
tRrg

k
. ~31!

This is of order 1026 m using the same parameters as
previous sections. We now neglect the gravitational eff
and assume that the surface is very sticky, that is, the
energy is lowered when the sphere is in contact with
surface by the amount proportional to the area of the cont
Then

d~2x2prd1kr 3!50, ~32!

wherex is the adhesion coefficient. The equilibrium radius
then

r c5S xd

k D 1/2

. ~33!

We next consider the interaction between two adhes
vesicles. If their strength of adhesion is proportional to t
contact area as in the previous example, the equilibrium
dius of a dimple turns out to bex/k. Hence the equilibrium
distanceD between the centers of the two vesicles is

D52S R2
x2

k2R
D . ~34!

Note that the equilibrium state is doubly degenerate due
the symmetry shown in Fig. 2. For a dense solution of th
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56 3417CONFORMATION FLUCTUATIONS OF POLYMERIZED . . .
spheres, or a spongelike solid phase, a residual entropy
to this degeneracy, similar to that of ice crystal, should b
observable.

Finally, we consider a spherical membrane in a pressu
field. For instance, we can deflate a tightly sealed membra
by sucking out the solution inside. Let us first consider th
easier case of controlling the volume. If we reduce the vo

ume inside the sphere fromV05 4
3 pR3 to V,V0, what

would be the minimum energy conformation of the sphere
Suppose there is one dimple on the surface with the rad
r 1. Here r 1 can be computed from simple geometrical con
siderations, and it turns out thatr 1;(DVR)1/4, where
DV5V02V. The energy cost to create this dimple is the
k(r 1)3;(DV)3/4. If we had two dimples of equal size in-

stead, then the radiusr 2 would ber 1
1
2

1/4 and hence the en-

ergy required would be increased by a factor of 23 1
2

3/4. That
is, one large dimple is preferred over many small dimple
This is typically observed in macroscopic world, such a
when we deflate a soccer ball by making a small hole on

Now let us apply a pressure differencep across the mem-
brane. This can be done, for example, by changing osmo
pressure across a semipermeable membrane. Here we
consider the situation in which the outside pressure is high
than that inside the vesicle. Let us suppose, for the mome
that the membrane buckles~at one point, as in the previous
paragraph! due to the applied pressure difference. Then th
energy cost due to buckling will be compensated for by th
work done by the pressure, that is, the total energy is

F5kr 32
pr4

R
. ~35!

By minimizing this equation with respect tor , we obtain

r c5
kR

p
. ~36!

Since this is an unstable equilibrium, the creation of dimple
will be suppressed. But dimples larger thanr c will sponta-
neously grow out of the valid regime of this description. Th
maximum pressure differencepcr which the sphere can stand
is then defined as that whenr c reachesj, that is,

pcr5
kR

j
'

Et2

R2
. ~37!

FIG. 2. Adhesion between two vesicles. Two symmetric con
figurations are possible with equal energy cost, as shown in~a! and
~b!. The sizes of the dimples are exaggerated for the sake of clar
ue
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This is of order 1023 N/m2. It should be noted that this
instability does not necessarily mean the total collapse of
spherical membrane when an external pressure larger
the critical one is applied.

V. THERMAL FLUCTUATIONS

A. System of hard rings

Under the assumption of strong inextensibility and fle
ibility, we have shown that large deformations of a clos
spherical membrane can be accounted for in terms of bu
ling of small circular parts into their mirror images, resultin
in small dimples on the surface. Since we exclude the po
bility of singular deformations in this paper, no two dimple
can overlap with each other. Then we can map the lo
temperature phase of the fluctuation of a spherical memb
to a system of nonoverlapping dimples. Furthermore, si
we are assuming that the membrane is homogeneous a
its thickness, buckled regions can also accommodate o
dimples which have the same sign of the radius of curvat
as that of the original undeformed membrane. Then this
erarchical buckling can continue indefinitely, only to be lim
ited by the two length scalesd andR. Hence we can regard
our system of dimples as that of nonoverlapping rings o
two-dimensional surface. The curvature of the underly
surface, i.e., the membrane, will be neglected, since we
interested in a length scale much smaller than the size of
vesicle,R. A schematic picture of a system of hard rings
a plane is shown in Fig. 3.

Let us then consider a system ofN hard rings of widthd
at a fixed temperatureb21. N is determined by the condition
that the free energy should be at a minimum with respec
variation ofN. Alternatively, one can use a grand canonic
ensemble with the chemical potential set to zero because
number of rings is not conserved. The canonical partit
function Z can be written as follows:

Z5
1

N!d3N
*)

i 51

N

dm~r i !dlW ie
2bH, ~38!

where

-

ty.

FIG. 3. A schematic picture of a typical configuration of no
overlapping rings. The curvature of the underlying surface~mem-
brane! is neglected, as explained in the text.
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H5(
i 51

N

F~r i !1(
i , j

U~r i ,lW i ;r j ,lW j !. ~39!

F(r i) is the self-energy of thei th ring, Eq. ~26!, and the
potentialU(r i ,lW i ;r j ,lW j ) represents the hard ‘‘core’’ inter
action betweeni th and j th rings. The integration measur
over the radii,dm(r i), is taken to bedri . This seems to be a
natural choice in view of the mapping from the origin
problem to this hard ring system.

Now, as we mentioned above, we assume that the fluc
tion in hi5r i

2/R, for all the dimples present, gives a goo
measure of the shape fluctuation of the sphere itself, fo
‘‘proper’’ range of temperatures which will be clarifie
shortly. Therefore, from now on, we will concentrate on th
hard ring system. First, if we neglect the hard-rim intera
tions between rings, then the partition function is easily
tegrated.

Z05
1

N!d3N )
i 51

N E
r min

r max
driE dlW ie

2bF~r i !, ~40!

wherer min5d is introduced as an ultraviolet cutoff. As wa
explained in Sec. IV,d provides the minimum length scal
in this picture. Defining*dlW [V, we obtain

Z05
VN

N!d3N )
i 51

N E
d

`

drie
2bkr i

3
'

1

N! S V

d2

e2bkd3

bkd3 D N

,

~41!

where we assumed the temperature is low enough to rep
r max (!R) by `. kd3 provides the elementary energy sca
in this model, as in the original problem.@See the discussion
below Eq. ~28!.#

Now, by extremizing the free energyG52b21lnZ with
respect to the number of ringsN, we obtain

N05
V

d2

e2bkd3

bkd3
, ~42!

2bG05N0 . ~43!

Recalling the thermodynamic relationG52PV when the
chemical potential is identically zero, this is just an ideal g
equation as it should be. Note, however, thatP remains con-
stant independent of the volumeV.

At a very low temperature, the average number of dimp
will be very small compared toV/d2, and hence the prob
ability of two dimples overlapping will be low. Therefor
this phantom ring system should be adequate to describe
low-temperature phase. Whenb21&kd3, the average heigh
~or rather depth! of the deformation due to the dimples ca
be estimated by multiplying the minimum heighth5d2/R by
the average area covered by dimples,N0d2/V. That is,

^w&5
d2

R

e2bkd3

bkd3
. ~44!
a-

a

-
-
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Hence the radius of thevesicle is reduced fromR to R
2^w& due to thermal fluctuations. The high-temperature
havior is similarly obtained with the following result for th
average height increase:

^w&5
d2

R

1

bkd3
. ~45!

Sinced;R1/2 and k;R25/2, ^w& has an overall linear de
pendence onR at high temperatures in contrast with the li
ear case, Eq.~22!. This means that the membrane is wild
fluctuating due to this buckling mode, if we do not includ
the interactions between the dimples.

B. Variational solution

We studied noninteracting gas of rings in Sec. V A, and
is clear that at a high temperature the rings will prolifera
and hence we need to include the ‘‘excluded volume int
action’’ between them. We incorporate this hard-rim intera
tion using a variational method as follows.

First, we define theone-body distribution function

r~r ,lW ![K (
i 51

N

d~r 2r i !d~lW 2lW i !L . ~46!

Integrating this overr gives the number density of dimples
N/V, which is independent of position for a homogeneo
system, and by integrating over the sphere we obtain
radius distribution function

r~r ![E dlW r~r ,lW !5K (
i 51

N

d~r 2r i !L . ~47!

We can easily obtain this function at low temperature us
the ideal dimple gas approximation

r0~r !5
V

d3
e2bkr 3

. ~48!

The distribution functionr(r ) has all the necessary pieces
information regarding properties of single rings. Among o
ers, one can compute the average size of a ring as well a
higher moments. For example,

^r i&0[E
d

`

dr rr0~r !YE
d

`

dr r0~r !5dS 11
1

bkd3D ,

~49!

where the subscriptsi and 0 indicate that the average
taken for a single ring at low temperature. We note, in pa
ing, that the radius of a dimple increases exponentially wh
the temperature is raised fromb2150.

Now we include the hard-rim interaction in the calcul
tion of the free energy through the variational method us
r(r ). First recall that the system hasN dimples on average
and that each dimple has a radiusr with the probability
r(r )/N. Then we neglect the fluctuations inr(r ) and con-
sider a system ofN dimples of fixed radii with the distribu-
tion r(r ). We apply a Flory-type argument@33# and obtain
the following free energy:
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G5E2b21S, ~50!

where

E5kE dr r 3r~r ! ~51!

S52E dr r~r !lnS r~r !d3

eV D2
2p

V S E dr rr~r ! D 2

.

~52!

Note that this variational free energyG has the form of
Virial expansion to second order.

We minimize the free energy with respect tor(r ), and
obtain the following results at high temperature:

r~r !5
V
d3

e2bkr 32r /d, ~53!

N5
V

d2
e2bkd3

. ~54!

As the temperature grows to infinity, the average numberN
approachesV/d2 asymptotically.r(r ) takes a simple expo-
nential form (V/d3)e2r /d.

We performed a computer simulation on a square latt
with periodic boundary conditions. The lattice constant w
taken as unity as well ask. The diameter of a ring was
discretized to take only integer values. The minimum rad
was set to 1. The system sizes were restricted to 20320 or
30330, because the maximum diameter of a ring was arou
10 even atb50.

The radius distribution functionr(r ) is plotted in Fig. 4
for b50, 0.1, and 1 from the top. Even though there are n
enough number of data points due to the underlying latti
the transition from the exponential decay at high temperat
to faster than exponential at low temperatures is clearly v
ible. The oscillations in the plots are due to the fact that
allowed half-integer values for radii.

The average number of dimples is shown in Fig. 5, a
the average radius of a single ring is plotted in Fig. 6. As c
be seen from these figures, the number of dimples increa

FIG. 4. log10r(r ) vs r at b50 (L), b50.1 (s), and b51
(h). The system size is 30330. The systematic wiggling of data
points is due to the presence of a lattice as explained in the tex
e
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explosively aroundb2151, while the size of an individua
dimple remains almost constant. The number of dimp
saturates as soon as the temperature rises aboveb2151. The
saturation value 40 is about the maximum number of rin
with which one can pack in the 20320 system. The interest
ing thing is that the average size of rings still grows arou
b21510 with the total number of rings constant. This al
saturates aboveb215100.

Now we calculate the average height of this deformat
due to buckling using simple counting as was done
Sec. V A. This is only possible because the radius of e
ring saturates at a fixed value as shown in the simulat
The result is

^w&5
d2

R
e2bkd3

. ~55!

This should be compared with the low-temperature beha
of the phantom ring system, Eq.~44!, in which the exponen-
tial factor is also dominant. In contrast, Eq.~55! saturates to
a fixed value at a high temperature unlike Eq.~45!. It should
be noted that the saturation valued2/R is of the same order
as the thicknesst. Hence, noting that̂w& is the upper bound
for Dw, we conclude that the vesicle remains almost p
fectly spherical even at very high temperatures.

.

FIG. 5. ^N& vs log10b
21. The system size is 20320. The error

bars are about the size of the symbols. This curve is to be comp
with Eq. ~54!, which predicts the low-temperature exponent
growth and the less steep saturation at high temperature.

FIG. 6. ^r i& vs log10b
21. The system size is 20320. The error

bars are about the size of the symbols. The average radius o
rings increases about 20% when the temperature grows one
dredfold fromb2151.
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Before we close this section, there is one last comm
regarding the calculation of̂w&. Due to the presence o
nested dimples the average radius of the dimples is no
rectly related to the height change. For example, the fi
level dimple contributes positively tow whereas the second
level dimple contributes negatively. However, as we saw
the variational solution and the simulation results, the av
age sizes of the dimples are very small, hence the probab
of having nested ones are exponentially small.

VI. CONCLUSION

Mechanical and thermodynamical properties of polym
ized vesicles have recently attracted a lot of attention du
their relevance to biology and biotechnology. In general,
lymerized membranes are very inextensible and flexible
the same time. We studied the shape fluctuations of a clo
spherical membrane in this limit. We first showed that o
needs to go beyond the linear theory to account for the fl
tuations. We then claimed that the dimplelike localized d
formation could be a building block of the nonlinear theo
The obvious advantage of this approach is that the ac
calculation is done in the linear regime.

For a red blood cell membrane with radiusR51024 m
n,

sk
nt

i-
t-

n
r-
ity

-
to
-

at
ed
e
c-
-
.
al

and thicknesst51028 m, we showed that, beyond the leng
scaled;1026 m and the temperatureb21;1 K, the fluc-
tuation of the membrane is well accounted for in terms of
thermodynamic properties of the system of nonoverlapp
rings which represent the buckled regions. As it turns o
the spherical membrane remains rigid even though it is m
of a very flexible material. This is due to the entropic inte
action between thermally generated hard rings. Our the
can be easily verified by light-scattering experiments in
visible spectrum range. We are currently trying to calcul
the structure factors for fluctuating spheres. This, howev
requires a more elaborate formalism than presented
since we need to calculateDw directly. Even though we
have considered only spherical membranes in this pape
generalization to arbitrary curved membranes should
straightforward, and the idea of localized nonlinear deform
tion should still be useful.
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